metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[*N*,*N*′-Bis(6-methoxysalicylidene)-1,3diaminopropane]nickel(II)

Mohammad Hossein Habibi,^a* Reza Mokhtari,^a Ross W. Harrington^b and William Clegg^b

^aCatalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, and ^bSchool of Natural Sciences (Chemistry), Newcastle University, Newcastle upon Tyne, NE1 7RU, England Correspondence e-mail: habibi@chem.ui.ac.ir

Received 24 July 2007; accepted 5 August 2007

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.101; data-to-parameter ratio = 17.2.

The title compound (systematic name: $\{3,3'-dimethoxy-2,2'-$ [propane-1,3-diylbis(nitrilomethylidyne)]diphenolato}nickel(II)), [Ni(C₁₉H₂₀N₂O₄)], is isostructural with its Cu^{II} analogue. The Ni^{II} ion is coordinated within a distorted square-planar N₂O₂ environment. The dihedral angle between the two NiNC₃O chelate rings is 22.38 (12)°.

Related literature

For the isostructural Cu^{II} compound, see: Habibi *et al.* (2007). For related literature, see: Gosden *et al.* (1981); Healy & Pletcher (1978); Shkol'nikova *et al.* (1970); Akhtar (1981).

Experimental

Crystal data

 $V = 1716.3 (4) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 1.16 \text{ mm}^{-1}$ T = 150 (2) K $0.34 \times 0.30 \times 0.30 \text{ mm}$

Data collection

Bruker SMART 1K CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2007)

 $T_{\min} = 0.690, \ T_{\max} = 0.725$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$vR(F^2) = 0.101$	$\Delta \rho_{\rm max} = 0.68 \text{ e } \text{\AA}^{-3}$
S = 1.06	$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$
083 reflections	Absolute structure: Flack (1983),
238 parameters	with 1870 Friedel pairs
restraint	Flack parameter: 0.00 (2)

13065 measured reflections

 $R_{\rm int} = 0.040$

4083 independent reflections

3384 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Ni-O2	1 855 (2)	Ni_N1	1 882 (2)
Ni-03	1.852 (2)	Ni-N2	1.895 (3)
O2-Ni-O3	81.06 (10)	O3-Ni-N1	164.26 (10)
O2-Ni-N1	92.44 (11)	O3-Ni-N2	92.77 (10)
O2-Ni-N2	166.39 (10)	N1-Ni-N2	96.42 (11)

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2005); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 2007); software used to prepare material for publication: *SHELXTL* and local programs.

The authors thank the EPSRC (UK) and Isfahan University Centre of Excellence (Catalysis and Fuel Cells) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2225).

References

- Akhtar, F. (1981). Acta Cryst. B37, 84-88.
- Brandenburg, K. (2007). *DIAMOND*. Version 3.1e. Crystal Impact GbR, Bonn, Germany.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gosden, C., Kerr, J. B., Pletcher, D. & Rosas, R. (1981). J. Electroanal. Chem. Interfacial Electrochem. 117, 101–107.
- Habibi, M. H., Mokhtari, R., Harrington, R. W. & Clegg, W. (2007). Acta Cryst. E63, m1998.
- Healy, K. P. & Pletcher, D. (1978). J. Organomet. Chem. 161, 109-120.
- Sheldrick, G. M. (2005). *SHELXTL*. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.
- Shkol'nikova, L. M., Yumal, E. M., Shugam, E. A. & Voblikova, V. A. (1970). Zh. Strukt. Khim. 11, 886–890.

supplementary materials

Acta Cryst. (2007). E63, m2304 [doi:10.1107/S1600536807038482]

[N,N'-Bis(6-methoxysalicylidene)-1,3-diaminopropane]nickel(II)

M. H. Habibi, R. Mokhtari, R. W. Harrington and W. Clegg

Comment

Nickel(II) complexes with N₂O₂ Schiff-base ligands derived from salicylaldehyde have long been used as homogenous catalysts (Gosden *et al.*, 1981; Healy & Pletcher, 1978). Recently we reported the structure of a copper(II) complex with the *N*,*N*⁻-bis(6-methoxysalicylidene)-1,3-diaminopropane ligand (Habibi *et al.*, 2007). The title compound is isostructural with its Cu^{II} analogue.

In the title compound (Figure 1), the Ni—O and Ni—N distances are larger than the comparable mean distances of 1.829 and 1.859 Å, respectively, in *N*,*N*-ethylenebis(salicylideneiminato)nickel(II) (Shkol'nikova *et al.*, 1970) and 1.849 (2) and 1.840 (2) Å, respectively, in *N*,*N*-ethylenebis[(2-hydroxy-1-naphthyl)methaniminato]nickel(II) (Akhtar, 1981).

Experimental

A mixture of 6-methoxysalicylaldehyde (2.0 mmol, 304 mg) and 1,3-diaminopropane (1.0 mmol, 74 mg) was dissolved in methanol (10 ml) with stirring for 10 min at room temperature, to give a clear yellow solution. A methanol solution (10 ml) of Ni(OAc)₂·4H₂O (1.0 mmol, 249 mg) was then added. The mixture was refluxed for a further 50 min and then filtered. After keeping the filtrate in air for 5 d, red block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent, in about 70% yield.

Refinement

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and with $U_{iso}(H) = 1.2$ or 1.5 times $U_{eq}(C)$.

Figures

Fig. 1. The molecular structure with atom labels and 50% probability displacement ellipsoids for non-H atoms.

{3,3'-dimethoxy-2,2'-[propane-1,3- diylbis(nitrilomethylidyne)]diphenolato}nickel(II)

Crystal data
[Ni(C ₁₉ H ₂₀ N ₂ O ₄)]
$M_r = 399.08$

 $F_{000} = 832$ $D_x = 1.544 \text{ Mg m}^{-3}$ Orthorhombic, $Pca2_1$ Hall symbol: P 2c -2ac a = 13.677 (2) Å b = 12.7319 (18) Å c = 9.8561 (14) Å V = 1716.3 (4) Å³ Z = 4

Data collection

Bruker SMART 1K CCD diffractometer	4083 independent reflections
Radiation source: sealed tube	3384 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.040$
T = 150(2) K	$\theta_{\text{max}} = 28.4^{\circ}$
thin–slice ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)	$h = -17 \rightarrow 17$
$T_{\min} = 0.690, \ T_{\max} = 0.725$	$k = -16 \rightarrow 17$
13065 measured reflections	<i>l</i> = −13→12

Mo Kα radiation

Cell parameters from 7044 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.2 - 28.3^{\circ}$

 $\mu = 1.16 \text{ mm}^{-1}$ T = 150 (2) K

 $0.34 \times 0.30 \times 0.30 \text{ mm}$

Block, red

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^2(F_o^2) + (0.0578P)^2 + 0.6306P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.101$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.68 \text{ e } \text{\AA}^{-3}$
4083 reflections	$\Delta \rho_{min} = -0.53 \text{ e } \text{\AA}^{-3}$
238 parameters	Extinction correction: SHELXTL (Sheldrick, 2005), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
1 restraint	Extinction coefficient: 0.0025 (7)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), with 1870 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.00 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni	0.82396 (2)	0.25163 (3)	0.10277 (8)	0.01355 (10)
01	0.8627 (2)	-0.12162 (17)	-0.1557 (3)	0.0282 (6)
O2	0.93677 (17)	0.21919 (17)	0.0070 (2)	0.0190 (5)
03	0.90841 (15)	0.34683 (16)	0.1831 (2)	0.0176 (5)
O4	0.69303 (16)	0.5363 (2)	0.4694 (3)	0.0254 (5)
N1	0.76069 (19)	0.12822 (18)	0.0450 (3)	0.0163 (5)
N2	0.71214 (18)	0.31603 (19)	0.1800 (3)	0.0147 (5)
C1	0.8822 (3)	-0.2066 (3)	-0.2485 (4)	0.0347 (9)
H1A	0.8303	-0.2593	-0.2411	0.052*
H1B	0.9452	-0.2389	-0.2259	0.052*
H1C	0.8844	-0.1794	-0.3414	0.052*
C2	0.9282 (3)	-0.0402 (2)	-0.1530 (3)	0.0208 (7)
C3	1.0159 (3)	-0.0395 (3)	-0.2224 (3)	0.0244 (7)
H3A	1.0353	-0.0979	-0.2761	0.029*
C4	1.0754 (3)	0.0490 (3)	-0.2116 (4)	0.0254 (7)
H4A	1.1356	0.0501	-0.2597	0.031*
C5	1.0507 (2)	0.1349 (3)	-0.1343 (3)	0.0222 (7)
H5A	1.0942	0.1928	-0.1278	0.027*
C6	0.9602 (2)	0.1368 (2)	-0.0644 (3)	0.0178 (6)
C7	0.8979 (2)	0.0481 (3)	-0.0745 (3)	0.0179 (6)
C8	0.8006 (2)	0.0511 (2)	-0.0200 (3)	0.0185 (6)
H8A	0.7615	-0.0098	-0.0331	0.022*
С9	0.6564 (2)	0.1131 (2)	0.0811 (3)	0.0195 (7)
H9A	0.6497	0.1051	0.1806	0.023*
H9B	0.6310	0.0487	0.0373	0.023*
C10	0.5990 (2)	0.2076 (3)	0.0335 (4)	0.0199 (7)
H10A	0.5292	0.1885	0.0243	0.024*
H10B	0.6232	0.2299	-0.0567	0.024*
C11	0.6092 (2)	0.2977 (3)	0.1331 (3)	0.0174 (7)
H11A	0.5845	0.3627	0.0899	0.021*
H11B	0.5676	0.2832	0.2132	0.021*
C12	0.7151 (2)	0.3884 (2)	0.2731 (3)	0.0154 (6)
H12A	0.6537	0.4113	0.3069	0.018*
C13	0.7990 (2)	0.4375 (2)	0.3308 (3)	0.0153 (6)
C14	0.8929 (2)	0.4154 (2)	0.2787 (3)	0.0154 (6)
C15	0.9741 (2)	0.4713 (2)	0.3329 (3)	0.0200 (7)
H15A	1.0382	0.4565	0.3009	0.024*
C16	0.9607 (2)	0.5459 (2)	0.4306 (4)	0.0209 (7)
H16A	1.0160	0.5819	0.4657	0.025*
C17	0.8673 (2)	0.5711 (2)	0.4810 (3)	0.0194 (6)
H17A	0.8594	0.6237	0.5485	0.023*
C18	0.7876 (2)	0.5181 (2)	0.4304 (3)	0.0173 (6)
C19	0.6746 (3)	0.6213 (3)	0.5603 (4)	0.0255 (8)
H19A	0.6041	0.6268	0.5769	0.038*
H19B	0.6984	0.6868	0.5201	0.038*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H19C	0.7085	0.6085	0.6463	0.03	8*	
Atomic displacer	nent parameters ((\dot{A}^2)				
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Ni	0.01077 (16)	0.01476 (16)	0.01513 (17)	-0.00103 (14)	0.0011 (2)	-0.00126 (15)
01	0.0344 (14)	0.0200 (11)	0.0301 (14)	0.0000 (10)	0.0024 (11)	-0.0091 (10)
O2	0.0152 (11)	0.0200 (10)	0.0218 (12)	0.0006 (9)	0.0038 (9)	-0.0030 (9)
O3	0.0112 (10)	0.0186 (11)	0.0229 (12)	-0.0027 (8)	0.0008 (9)	-0.0038 (9)
O4	0.0096 (10)	0.0312 (12)	0.0354 (15)	0.0022 (9)	0.0021 (10)	-0.0172 (11)
N1	0.0155 (13)	0.0165 (12)	0.0168 (13)	-0.0028 (10)	0.0004 (10)	-0.0001 (10)
N2	0.0085 (12)	0.0175 (12)	0.0182 (14)	-0.0014 (10)	-0.0017 (10)	-0.0001 (10)
C1	0.043 (2)	0.0250 (18)	0.036 (2)	0.0011 (17)	0.0013 (19)	-0.0158 (16)
C2	0.0258 (18)	0.0209 (15)	0.0156 (16)	0.0046 (13)	-0.0049 (13)	-0.0009 (13)
C3	0.0289 (19)	0.0268 (16)	0.0176 (16)	0.0100 (15)	-0.0004 (14)	-0.0048 (13)
C4	0.0206 (17)	0.0349 (18)	0.0209 (17)	0.0083 (14)	0.0014 (14)	-0.0011 (15)
C5	0.0205 (16)	0.0258 (16)	0.0203 (17)	0.0023 (13)	0.0010 (13)	-0.0003 (13)
C6	0.0177 (15)	0.0201 (14)	0.0155 (15)	0.0026 (12)	-0.0014 (12)	0.0002 (12)
C7	0.0185 (16)	0.0205 (16)	0.0146 (15)	0.0045 (12)	-0.0015 (12)	-0.0004 (12)
C8	0.0210 (16)	0.0168 (14)	0.0177 (16)	0.0005 (12)	-0.0017 (12)	0.0017 (12)
C9	0.0159 (14)	0.0216 (14)	0.0212 (19)	-0.0053 (11)	0.0027 (13)	-0.0013 (12)
C10	0.0150 (15)	0.0225 (15)	0.0223 (17)	-0.0036 (13)	-0.0014 (13)	-0.0048 (13)
C11	0.0059 (13)	0.0240 (15)	0.0222 (19)	-0.0016 (11)	-0.0026 (11)	-0.0030 (12)
C12	0.0076 (13)	0.0209 (14)	0.0176 (15)	0.0027 (11)	0.0009 (11)	-0.0012 (12)
C13	0.0098 (14)	0.0164 (14)	0.0196 (16)	-0.0005 (11)	-0.0004 (12)	-0.0007 (12)
C14	0.0125 (15)	0.0167 (14)	0.0170 (16)	0.0010 (12)	0.0022 (12)	0.0018 (12)
C15	0.0101 (15)	0.0234 (15)	0.0266 (18)	-0.0019 (12)	0.0022 (13)	-0.0025 (13)
C16	0.0146 (15)	0.0210 (15)	0.0270 (18)	-0.0041 (12)	-0.0040 (14)	-0.0034 (14)
C17	0.0163 (15)	0.0201 (14)	0.0218 (16)	-0.0012 (12)	-0.0002 (13)	-0.0060 (12)
C18	0.0100 (14)	0.0204 (15)	0.0214 (16)	0.0028 (11)	0.0004 (12)	-0.0034 (12)
C19	0.0202 (16)	0.0280 (17)	0.028 (2)	0.0039 (13)	0.0039 (13)	-0.0105 (13)

Geometric parameters (Å, °)

Ni—O2	1.855 (2)	C6—C7	1.418 (4)
Ni—O3	1.852 (2)	C7—C8	1.436 (5)
Ni—N1	1.882 (2)	C8—H8A	0.950
Ni—N2	1.895 (3)	С9—Н9А	0.990
O1—C1	1.441 (4)	С9—Н9В	0.990
O1—C2	1.370 (4)	C9—C10	1.512 (5)
O2—C6	1.303 (4)	C10—H10A	0.990
O3—C14	1.302 (4)	C10—H10B	0.990
O4—C18	1.369 (4)	C10-C11	1.516 (4)
O4—C19	1.427 (4)	C11—H11A	0.990
N1—C8	1.294 (4)	C11—H11B	0.990
N1—C9	1.482 (4)	C12—H12A	0.950
N2—C11	1.500 (4)	C12—C13	1.425 (4)
N2—C12	1.301 (4)	C13—C14	1.411 (4)
C1—H1A	0.980	C13—C18	1.428 (4)

C1—H1B	0.980	C14—C15	1.424 (4)
C1—H1C	0.980	C15—H15A	0.950
C2—C3	1.381 (5)	C15—C16	1.365 (4)
C2—C7	1.427 (4)	C16—H16A	0.950
С3—НЗА	0.950	C16—C17	1.408 (4)
C3—C4	1.394 (5)	С17—Н17А	0.950
C4—H4A	0.950	C17—C18	1.376 (4)
C4—C5	1.375 (5)	С19—Н19А	0.980
С5—Н5А	0.950	С19—Н19В	0.980
C5—C6	1.416 (4)	С19—Н19С	0.980
O2—Ni—O3	81.06 (10)	N1—C9—H9B	109.9
O2—Ni—N1	92.44 (11)	N1—C9—C10	108.8 (2)
O2—Ni—N2	166.39 (10)	Н9А—С9—Н9В	108.3
O3—Ni—N1	164.26 (10)	H9A—C9—C10	109.9
O3—Ni—N2	92.77 (10)	H9B—C9—C10	109.9
N1—Ni—N2	96.42 (11)	C9—C10—H10A	109.5
C1—O1—C2	117.4 (3)	С9—С10—Н10В	109.5
Ni	131.2 (2)	C9—C10—C11	110.7 (3)
Ni	130.3 (2)	H10A—C10—H10B	108.1
C18—O4—C19	118.2 (2)	H10A—C10—C11	109.5
Ni—N1—C8	126.2 (2)	H10B—C10—C11	109.5
Ni—N1—C9	118.56 (19)	N2-C11-C10	113.8 (3)
C8—N1—C9	115.2 (3)	N2—C11—H11A	108.8
Ni—N2—C11	124.5 (2)	N2—C11—H11B	108.8
Ni—N2—C12	124.4 (2)	C10-C11-H11A	108.8
C11—N2—C12	110.9 (3)	C10-C11-H11B	108.8
O1—C1—H1A	109.5	H11A—C11—H11B	107.7
O1—C1—H1B	109.5	N2-C12-H12A	115.9
O1—C1—H1C	109.5	N2-C12-C13	128.1 (3)
H1A—C1—H1B	109.5	H12A—C12—C13	115.9
H1A—C1—H1C	109.5	C12-C13-C14	120.0 (3)
H1B—C1—H1C	109.5	C12-C13-C18	120.1 (3)
O1—C2—C3	124.2 (3)	C14—C13—C18	119.6 (3)
O1—C2—C7	114.7 (3)	O3—C14—C13	123.1 (3)
C3—C2—C7	121.1 (3)	O3—C14—C15	118.7 (3)
С2—С3—НЗА	120.9	C13—C14—C15	118.3 (3)
C2—C3—C4	118.3 (3)	C14—C15—H15A	119.7
H3A—C3—C4	120.9	C14—C15—C16	120.5 (3)
C3—C4—H4A	118.6	H15A—C15—C16	119.7
C3—C4—C5	122.8 (3)	C15—C16—H16A	119.0
H4A—C4—C5	118.6	C15—C16—C17	122.0 (3)
C4—C5—H5A	120.1	H16A—C16—C17	119.0
C4—C5—C6	119.9 (3)	C16—C17—H17A	120.7
H5A—C5—C6	120.1	C16—C17—C18	118.6 (3)
O2—C6—C5	119.4 (3)	H17A—C17—C18	120.7
O2—C6—C7	122.1 (3)	O4—C18—C13	114.7 (3)
C5—C6—C7	118.5 (3)	O4—C18—C17	124.3 (3)
C2—C7—C6	119.4 (3)	C13—C18—C17	121.0 (3)
C2—C7—C8	119.5 (3)	O4—C19—H19A	109.5

supplementary materials

C6—C7—C8	120.7 (3)	O4—C19—H19B	109.5
N1—C8—C7	126.6 (3)	O4—C19—H19C	109.5
N1—C8—H8A	116.7	H19A—C19—H19B	109.5
С7—С8—Н8А	116.7	H19A—C19—H19C	109.5
N1—C9—H9A	109.9	H19B—C19—H19C	109.5
O3—Ni—O2—C6	161.9 (3)	C3—C2—C7—C6	-1.8 (5)
N1—Ni—O2—C6	-3.7 (3)	C3—C2—C7—C8	171.0 (3)
N2—Ni—O2—C6	-134.3 (5)	Ni—N1—C8—C7	-7.3 (5)
O2—Ni—O3—C14	-179.7 (3)	C9—N1—C8—C7	175.7 (3)
N1—Ni—O3—C14	-113.2 (4)	C2C7C8N1	-175.1 (3)
N2-Ni-O3-C14	12.5 (3)	C6—C7—C8—N1	-2.4 (5)
O2—Ni—N1—C8	8.9 (3)	Ni—N1—C9—C10	54.3 (3)
O2—Ni—N1—C9	-174.2 (2)	C8—N1—C9—C10	-128.4 (3)
O3—Ni—N1—C8	-56.2 (6)	N1-C9-C10-C11	-80.6 (3)
O3—Ni—N1—C9	120.8 (4)	Ni—N2—C11—C10	10.4 (4)
N2—Ni—N1—C8	178.5 (3)	C12—N2—C11—C10	-174.9 (3)
N2—Ni—N1—C9	-4.5 (2)	C9-C10-C11-N2	45.3 (4)
O2—Ni—N2—C11	101.5 (5)	Ni—N2—C12—C13	3.4 (5)
O2—Ni—N2—C12	-72.5 (6)	C11—N2—C12—C13	-171.3 (3)
O3—Ni—N2—C11	164.0 (2)	N2-C12-C13-C14	5.6 (5)
O3—Ni—N2—C12	-10.0 (3)	N2-C12-C13-C18	178.4 (3)
N1—Ni—N2—C11	-28.8 (2)	Ni-O3-C14-C13	-7.5 (4)
N1—Ni—N2—C12	157.2 (3)	Ni-O3-C14-C15	172.9 (2)
C1—O1—C2—C3	-7.0 (5)	C12—C13—C14—O3	-3.7 (4)
C1—O1—C2—C7	171.3 (3)	C12—C13—C14—C15	175.9 (3)
O1—C2—C3—C4	179.5 (3)	C18—C13—C14—O3	-176.5 (3)
C7—C2—C3—C4	1.3 (5)	C18—C13—C14—C15	3.0 (4)
C2—C3—C4—C5	0.5 (5)	O3-C14-C15-C16	178.2 (3)
C3—C4—C5—C6	-1.7 (5)	C13-C14-C15-C16	-1.4 (5)
Ni-O2-C6-C5	176.4 (2)	C14—C15—C16—C17	-0.4 (5)
Ni-O2-C6-C7	-3.7 (5)	C15-C16-C17-C18	0.5 (5)
C4—C5—C6—O2	-179.0 (3)	C19—O4—C18—C13	-175.0 (3)
C4—C5—C6—C7	1.1 (5)	C19—O4—C18—C17	5.2 (5)
O2—C6—C7—C2	-179.3 (3)	C16—C17—C18—O4	-179.0 (3)
O2—C6—C7—C8	8.0 (5)	C16—C17—C18—C13	1.2 (5)
C5—C6—C7—C2	0.6 (5)	C12—C13—C18—O4	4.4 (4)
C5—C6—C7—C8	-172.1 (3)	C12-C13-C18-C17	-175.8 (3)
O1—C2—C7—C6	179.8 (3)	C14—C13—C18—O4	177.2 (3)
O1—C2—C7—C8	-7.4 (4)	C14—C13—C18—C17	-3.0 (5)

